| 手機閱讀| 用戶留言 | 加入收藏 | 設為首頁
懶人在線計算器
  • 您當前的位置:首頁 > 數學計算器

    一元二次方程的根與系數之關系

    發布時間:2018-09-16 07:53:25 作者:孫樹 

    一元二次方程的根與系數之關系
    在解一元二次方程時,我們發現它的根與系數之間有一定之 關系。
    例如,在解方程χ2 - 5χ + 6 = 0 時,得
    χ1 = 2 、χ2 = 3 。
    可以看出, χ1 + χ2 = 5 是一次項系數-5 的相反數; χ1 . χ2 = 6 是 常數項。
    又如,解方程2χ2 + 5χ - 3 = 0 時,得

    可以看出,是一次項系數5除以二次項系數2所得的商之相反數; 是常數項-3除以二次項系數2所 得的商。
    一般地,對于一元二次方程aχ2 + bχ + c = 0 ( a ≠ 0 ),

    由此得出,一元二次方程的根與系數有下列關系:

    如果aχ2 + bχ + c = 0 ( a ≠ 0 )的兩個根是1 χ 、2 χ ,

    那么

    如果把方程aχ2 + bχ + c = 0 ( a ≠ 0 )變形為

    我們就可以把它寫成
    χ2 + pχ + q = 0 的形式,其中從而得出

    如果χ2 + pχ + q = 0 的兩個根是χ1 , χ2 ,那么

    χ1 . χ2 = -p , χ1 . χ2 = q

    例題1:

    已知方程5χ2 + kχ - 6 的一個根是2,求它的另一個根及k的值。

    答:方程的另一個根是

    試一試,能不能把χ = 2 代入原方程,先求出k 的值,再求出另一個根?

    利用根與系數的關系,求一元二次方程2χ2 + 3χ -1 = 0 兩 個根的 (1) 平方和; (2) 倒數和。

    解:設方程的兩個根是χ1 χ2 ,那么

    答:方程的兩個根之平方和是,倒數和是3

    更新:20210415 180645     


    .

    發表評論

     共有人參與,請您也說幾句看法

     
       驗證碼: 看不清楚,點擊刷新 看不清楚,點擊刷新
    360婷婷丁香